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ABSTRACT 

A simple axisymmetric model of t he  interplanetary magnetic f i e l d  

is  described ad. solved analyt ical ly .  

i n t o  three  regions by two concentric ssheres, conductivit ies are 

I n  t h i s  model, space i s  divided 

assumed t o  be isotropic  and constant i n  each region and flow ve loc i t ies  

are prescribed a p r io r i .  

t h e  axis of a dipole embedded i n  i t s  center,  the  intermediate region 

The innermost region ro t a t e s  r ig id ly  around 

contains a com2ressible f l u i d  (an ideal izat ion of t he  s o l a r  wind) 

flowing r ad ia l ly  outward with constant veloci ty  and f ina l ly ,  t he  outer- 

most region i s  at r e s t .  

case of infini-ce conductivity, t o  the "garden-hose effect" ,  t o  t he  

Special  a t ten t ion  i s  given t o  the  l imi t ing  

e l e c t r i c  f i e l d  and t o  the  e f f ec t s  of a constant f i e ld ,  aligned with 

t h e  c e n t r a l  dipole, i n  t h e  outermost region. 
~ . *  
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INTRODUCTION 

Experimental evidence available now indicates t he  existence of 

an interplanetary f i e l d ,  originating i n  the sun and extending at 

l e a s t  t o  t h e  e a r t h ' s  orbi t ,  possibly much fur ther .  There are s t i l l  

many uncertain points concerning t h i s  f i e ld ,  but two of i t s  main 

general properties have been predicted theore t ica l ly  and seem t o  be, 

so far, i n  agreement with experiment. Both may be regarded as m a n i -  

f e s t a t ions  of t h e  f ac t  t h a t  a highly conducting fluid--here, the  

s o l a r  wind emanating rad ia l ly  from the sun--tends t o  impart i t s  motion 

t o  magnetic l i n e s  cf force embedded i n  it. F i r s t ,  it was predicted 

t h a t  t h e  s o l a r  wind w i l l  s t re tch  the  l ines  of force, rendering them 

almost radial. and causing the  f i e l d  in tens i ty  - B t o  fall off less 

rapidly then  it would otherwise (e .g.  [Alf'ven, 1961). 

addi t ion t o  r a d i a l  stretching, t he  f i e l d  was expected t o  be twisted 

by s o l a r  ro ta t ion  i n t o  an, archimedean s p i r a l .  This point was noted 

first by Chapman (1.928) who observed tha t  t he  locus of a pa r t i c l e  

stream constantly emitted from a point on the  sun is ,  a t  any t i m e ,  

such a s p i r a l  ( the same locus is  described by droplets emitted from 

a ro t a t ing  spr inkler ,  for  which reason the above is  sometimes ca l led  

the  "garden-hose effect  ' I ) .  

p a r t i c l e s  would a l s o  follow such a spiral, and it was argued t h a t  a 

similar twist ing occurs i n  ro ta t iona i iy  symmetric s i i u a t i o a s ,  e ~ e ~  

though the arguments presented f o r  t h i s  (Parker, 1958; Axford, Dessler 

and Gottl ieb,  1.963) were somewhat unsatisfactory. The e f f e c t  has a l s o  

Secondly, i n  

A l i n e  of force drawn out by a szream of 
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been deduced from experimental data, from the  cosmic ray f l a r e  e f f e c t  

(McCracken, 1 ~ 2 ) + i - m c c r  i' bi; a ( G r - ~ a s t d L ,  1- ) and Mariner 11 

data  (Davis, 1953); the  "garden-hose angle" x between B and the  r a d i a l  

d i rec t ion  from the sun i n  all those cases was of t he  order of 45". 
- 

In  t h i s  work, a simple model of the  interplanetary f i e l d  w i l l  be 

investigated,  f i r s t  i n  the  l imi t ing  case of a per fec t ly  conducting 

f l u i d  and then for the  case of f i n i t e ,  homogeneous and i so t ropic  

conductivity. The model i s  as follows: 

Let space '3e divided in to  three regions by two concentric spheres 

of r a d i i  R, and Rl ( f i g .  1). 

ro ta t e  r ig id ly  -dith angular veloci ty  w. 

t h e  source of magnetic f i e ld ,  which w i l l  be assumed t o  be a point dipole 

a t  the  or igin,  with dipole moment m p a r a l l e l  t o  t he  ax is  of ro ta t ion .  

Region 11, between the  spheres, contains a compressible conducting 

f l u i d  flowing out r ad ia l ly  with constant veloci ty  u. 

I11 which extends t o  in f in i ty ,  no motion takes  place. 

represents  t he  sun, region I1 the  space swept by the  so l a r  wind. The 

equation connec-cing the  magnetic f i e l d  B, the  e l e c t r i c  f i e l d  E, the  

ve loc i ty  v and the  conductivity 0 i s  

Region I, the  innermost, i s  assumed t o  

T h i s  region a l so  contains 

- 

Finally,  i n  region 

Region I here 

- 

- 
su<l 2 = p a  ( g  + [ Q x $ 3 )  

and w e  shall 5e in te res ted  i n  s ta t ionary solutions with ro t a t iona l  

symmetry around m, with pa r t i cu la r  i n t e re s t  i n  the  case when 0 i s  la rge  - 
-&.A nm.4 F5 zo?Li2!erzbl;. ir? excess nf  B+- 

It should be borne i n  mind all along t h a t  the preceding is  a gross 

oversimplification of the  ac tua l  s i tuat ion.  F i r s t  of all, it i s  not 
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ihether t k  solar dipole f i e l d  plays a major role  .n 

creating t h e  in t e rpkne ta ry  f i e l d .  

due t o  act ive areas influence it considerably and cause it t o  depart 

from rotat ion& symmetry. 

conducting f l u i d  but ra ther  a near-coll isionless plasma, the  conduc- 

t i v i t y  of which i s  highly anisotropic; i t s  flow may a l s o  very well 

prove t o  be tur5ulent .  

assume sharp discont inui t ies  where gradual t r ans i t i ons  probably occur. 

Finally,  in any problem of t h i s  s o r t ,  t h e  veloci ty  v i s  generally not 

determined a p r i o r i  but has t o  be solved simultaneoilsly with 2, Using 

the  hydromagnetic flcw equation (e.g. [Chandrasekar, 2.9561). 

v i c i n i t y  of t he  ear th ,  of course, t h e  mass flow d ic ta tes  t he  magnetic 

f i e l d  because of i t s  much higher energy density; nevertheless, i n  t h e  

v i c i n i t y  of what corresponds t o  the  outer sphere i n  t h i s  model, t he  

flow w i l l  be considerably d is tor ted  by the f i e l d .  

Certainly, intense loca l  f i e l d s  

Next, the  so la r  wind i s  not an ordinary 

Furthermore, t he  imposed boundary conditions 

In the  

Unfortunately, a more r e a l i s t i c  model would be very hard t o  solve 

ana ly t ica l ly .  It i s  hoped, however, t h a t  the  r e su l t s  obtained here 

w i l l  give some qual i ta t ive insight about the behavior of t he  ac tua l  

interplanetary f i e l d .  

' THE LDiTL'ING CASE 

If CJ tends t o  i n f i n i t y  while B s tays  f i n i t e ,  we generally get 

E 3 - [ ? * $ I  
Since B i s  ro ta t iona l ly  symmetric and stationary,  aB/& vanishes and 

one has, i n  t he  l i m i t  of i n f i n i t e  CJ 

- - 
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i n  region I1 

l""1 = u $39 -io%+ ) 

The 'p component o f t h e  c u r l  gives 

& = 5(W/T 

where 5 ( Q )  i s  arj a rb i t r a ry  function. The other two components give 

3 ,  = A / ( c s r n o - )  

This solution, however, i s  s ingular  on the  symmetry axis unless A = 0: 

Theref ore 

0 
r 

= 

The condition div = 0 determines the form of t he  t h i r d  component 

as 3" = ;@]/Y.' 

with 5 ( 8 )  another a rb i t r a ry  function. 

On the surface r = Ro, E+ i s  continuous. Jus t  inside the  boundary, 

E, = - IJ;B 

s ide  t h e  boundary t o  give 

and s ince B r r i s  continuous too, we may use i ts  value out- 

E@(%) = - (UqR,) s'-9 QW) 

5 (\sJ a 4 (d/u) S b n 9  S(V) 

9 

The cont inui ty  of E, now gives 

giving as the  tangent of t he  "garden-hose angle" 

= % + / a w  : - (LJJ/M} Y s L Q  

Several points i n  the  a3ove r e su l t s  deserve notice.  F i r s t ,  i n  a 

source-free region, t he  various components of the  magnetic f i e l d  f a l l  

nff zt &ffer~-n-. r2it.e: w i t h  d-lstmce; the higher mul t ipoks  decreasing 

faster. For instance, t he  e a r t h ' s  magnetic f i e l d  (neglecting e f f ec t s  

(2b ) 

(2c)  

(3)  
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of the v e g n e t o ~ u s e )  ap_maxWtes a. disole rrruch 'cztter 80% distance 

away than on i t a  surfcce. 

planetary s p c e  (which i s  not sowce-free):  

This i s  not true f o r  the f i e l d  i n  inter: 

i n  the limit of i n f i n i t e  

.conCuctivity, eJ2  m l t i p o l e  cojcrponents of the f i e l d  f a l l  may 8s the  

inverse q w r e  of' tAe disL&nce. 

f i e l d  contxino a mCeterxined function s(&); t h i s  cen only be evalu- 

at& when aare  iiCo-ix-tion cbout the field's sG;Lrce i s  given. 

choosing the solw T & ~ U S  f o r  Ro md assuming B a t  the solar surface 

is one gcuss, one f i d s  a t  the eez th ' s  distrrnce (cpprox. 200 RO) Br = 
2.5r, in ageeEznt  with obsemation (Coleman, D m i s  and Sonett, 1960). 

It should also 32 noted t h a t  The 

F i m l l y ,  

- 

A t  this dis-ce, t ak i ag  sppropriate vsJ-ues f o r  u zd w, B 

t o  be of the sane order 86 Br. 

the s t rength  of the sol= surface f i e l d  and that of the interplanetary 

field near the ear th .  

i s  found 

There is thus no disageeuentbetween 
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T€lE CASE OF FDTZTL: COATD'UTTIVITY 

We now t u r n  t o  solving the  problem f o r  a r b i t r a r y  0. We s h a l l  

assume cs is uniform i n  each region m d  takes the  values csI, o2 and 

o3 i n  regions I, 11 and I11 respectively.  The following theorem i s  

found useful: i f  a vector f i e l d  -. B s a t i s f i e s  

d ;Jg  = 0 

it m a y  be decomposed uniquely i n  the  following manner 

' 2 Lug\ 9,y + u A * \ C U Y l  2&'r .. 
The theorem has been proved f o r  ro ta t iona l  sym!!etrj by Lust and 

Schluter [ l 9 4  a d  f o r  t he  general case by Backus C1~81.; following 
.. 

Elsasser [lgk6] t h e  component f i e l d s  w i l l  be termed the  to ro ida l  and 

poloidal  coqonents ,  respectively.  The following i d e n t i t i e s  hold 

general ly  [Saythe, 19501 : 

and f o r  ro-lational symmetry 

where 

and f o r  any Legendre polynomial Pn(cos6) 

,?T4 = - ?c ( % + I )  3, 
9. -.I It should be noted t h a t  Yl and '? 

function of r, and a l s o  t h a t  ( for  ro ta t iona l  symmetry) the  to ro ida l  

a re  deierruined w i L h i L i  ai ar.o~br-al;y 2 

(4) 
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component i s  t h e  'P component of the  f i e l d .  If I3 s a t i s f i e s  - 

v-g = 0 

Yl and Y may be spec i f i e s  t o  be harmonic [%@he, 13503. 
2 

Since I3 i s  assumed t o  s ta t ionary,  one m a y  write - 

E =  - - 2, 

The problem thus reduces t o  finding the three  sca l a r  functions 

Y o ,  Yl and ?2 by means of the  three  sc&ar equations const i tut ing 

equation (1) 

and it my be ve r i f i ed  t h a t  

( q s & g Q 2 L  ) lir 1 n ]  = - c3 y d  - Q8- 

Thus, equation (7)  holds and we ge t  

0-9, = $9, = 0 

To obtain a31 expression fo r  Yo ,  we i n s e r t  equations (5b), (8) and (9) 

in to  (1) and ge t  

or  

It is useful  t o  expand yl and * 
sion w i l l  have a s ingu la r i ty  a t  the  or ig in  due t o  the  dipole f i e ld ,  

i n  spherical  harmonics. This expan- 2 

which m a y  be derived from a poloidal potent ia l  



0 

which m a y  be integrated t o  give 

'L 

v!& - pL(ov.LLL( 5% = LCV) (16 
The general  solut ion of t h i s  is the sum of the  solut ion of the  homo- 

y2 
geneous equation axd an a rb i t r a ry  function of r. 

i s  defined within such an a rb i t r a ry  function, we may se t  h ( r )  = 0. 

Since, however, 

In terms of t h e  dimensionless var iable  f one then obtains 

0 &!, - yo%% 12 f 2p(Yd) = 

The dimensionless quantity 

a d  -- ~ ~ ~ z U ~ Q  

may be regardzd as the  magnetic Reynolds number [Elsasser, 19561 of 

the system. The l imi t ing  case of very high conductivity occurs when 

it i s  much l a rge r  than unity.  

Kext, elimin3te the  c u r l  t e rns  from (14) by means of (15) and 

A n  equation i s  obtained which may be take t h e  c u r l  of $he r e s u l t .  

in tegrated with respect t o  8, yielding an equation f o r  Yl similar t o  

(16). For the  same reason as before, the arbitrary function of r is 
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taken as zero, givi:?g 

v ' q ,  - p T d A  $ &v-l = 0 

v? , - 3 3 p  WJ) = o  

or  i n  dimensionless var iables  

9& '3 

?inally,  i n  eqitztion (1);) from which the  curl t e r m  have been e l h i n a t e d ,  

subs t i tu te  V2Yl from (19). The r e su l t  may be wri t ten 

3Y.J { %MY-) - ' Y \ y y q  + U r p o r ~  } = o  

giving 

\ %  Y e  - - UY,-~ - p % Q y ( ~ ? # f )  +. ~1 

Let us seek a solution of (17) of the form 

9& = LI g,w ?,(-+*) 

defining 3,CS) = S3%19) 

t he  following equations are obtained 

2; - 2d y:, - X ( V + l ) P  3% = 0 

, The f i r s t  der ivat ive i s  eliminated by subst i tut ing 

d-P xw = M,(P) e 

giving . 

u': - Mr, ( & = +  % % b + 1 > / J L )  = 0 

The last  equation may be integrated analytically ([Murphy, 15603; 

P. 337, eq. 2561, giving 

(23 

Taking (A,, A ) = (1,O) , ( O , [ - I I " )  we obtain two independent solutions 

which lead  t o  two independent solutions for gii, denoted g-- and gi-= 
2 

1 U  

QJ J-2 - c [ ~ r m i % n b ( f )  + ~ ~ 1 ~ , , t ~ )  ] 7% ( -8 )  (25) 

(26 



Y, and Y may be expanded i n  spherical  harmonics 
2 

THE POLOIDAL F E L 3  

On t h e  boundizies, t he  three conponents of B and the  e l e c t r i c  

po ten t i a l  a re  con?;inuous ( the continuity of t he  normal component of 

curl I3 does not add any new conditiion here) .  

boundaries a re  spherical ,  the  quant i t ies  continuous across the  two 

- 

I n  t h i s  case, where the  - 

boundaries are 

giving 8 equations for the  8 s e t s  of unknown coeff ic ients  previously 

defined. 

respect t o  . 
Let B = p0m/4nRO2 and l e t  dashes denote derivatives with 

If n # 1, the  following re la t ions  hold 

- - 
J L l  %-<( I )  + L% 9,,;Cl) 

'YL 4.w - &%, $, ( 1 )  3 9rYL $AI) 

!2r: - -& a,, (391 + Qr-2 U,) 

- [?>+I )  L: = em, s, %:,IJJ -E- 9, a:, (3 ,  ) 

U 

c 



These equations are  homogeneous and w i l l  i n  general  have only the 

t r i v i a l  solutiori i n  which a l l  coeff ic ients  vanish. For n = 1, however 

'nIZ(?) = -!- j, ( d +  f )  
v 

The solut ion of (31) i s  then readi ly  obtained as 

&,I = 3 P S d  

A,, = - 3 p g  c 

a =  - e ( 2 2 -  qJc 4- 3 )  

where 

2 d  

It should be noted t h a t  so far u) a.nJ C3 have not entered. The 

r e s u l t s  oStained r e f l e c t  on ly  the  s t re tching of the f i e l d ' s  radial 

(33 1 

(34) 

componenz m d  hzve notbing t o  do with the  ro ta t ion  of region I. 
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it i s  of i n t e re s t  t o  note the  Sehavior o f  the solution if both 

cr and 9, are  somewhat (an order of magnitude or more) l a rge r  than 

unity. Then 

s 2 - \/bC 

s o  i n  region I1 

.- 
u-~LGL - - A ~  -u..~k-.-y-~Locs made the  f i r s t  te ra ,  contributed by bll, is  

dcminant everywhex except n e w  the outer bouEda-ry, where the  f i e l d  

departs from the  r a d i a l  d i rec t ion  a d  curves t o  meet t he  outside dipole 

f i e l d .  By equation (6b) 

i n  agreement with the  l imi t ing  solution.. In t he  l i m i t  

from which, i n  region I 

Y L  = J3m9 ( $ A + )  

The po lo ida l  f i e l d  at  

there  by the  centi-al dipole alone. 

f'= 1 i s  thus 3/2 times the f i e l d  produced 

TEE TOROIDAL FIELD 

%fining 

(35 1 I 
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is.(lO), (21) snd (28) become, i n  dimensionless units of length, 

the set of equations obtained for any n but 2 o r  0 i s  homogeneous 

and i t s  only  general  solut ion i s  zero. 

bute t o  - B,*so  w e  concentrate on the  quadrupole term. 

f inds  i n  region 11, f o r  the  quadrupole term only 

The n = 0 term doesn't contr i -  

Using eq. (24) one 

accordingly, we define 
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Then t h e  bpundary conditions give 

Z Q a  3 - - A ( % ,  + A, Q z *  

d; = >#a,, 4- A 9  Q Z L  

= - O C , ~  A (A,- A , ) .  
suppose Q 9 1 S,>> I . Then t h e  order of magnitudes of the coeff ic ients  

If a i s  not large,  the  first term i n  brackets may be neglected 
3 

anywhere i n  region I1 except close to i ts  outer boundary. Then 

9, = - ( p w )  'Pdmg.) 4- $(I)  

using (6a) 
L3 Ro 3q = 3$ u . Y 6&\4.Cs9@ 

from which, by (3b), the tangent of the  "garden-hose angle" i s  

(44) 



Near the  boundary, if 31 a3 > 1, the  f i r s t  term of (47) predominates. 

Neglectiag the  second one altogether,  equation (6a) gives, on the  boundary 

b., 0 - (3  f d , d / u )  s-4 .cb34-  (51) 
hence, i n  region I11 

It is evident t h a t  Y, diverges i f  as - a. The reason f o r  t h i s  is, 

roughly, t h a t  i f  a l l  regions are  idea l  conductors, t h i s  model will exci te  

i n f i n i t e  currents by unipolar induction, leading t o  i n f i n i t e  t o ro ida l  f ie lde .  

If the  problem could be solved more r e a l i s t i c a l l y ,  with the  flow veloci ty  

v as one of the  unknowns, as a3 increases without l i m i t  t he  force [J x B] 

on t h e  flow a l s o  Biverges. 

near the boundary, and the  current density self- l imited.  

- - 
The flow then would have been grea t ly  modified 

THE EUCTRIC FIELD 

The e l e c t r i c  f i e l d  w i l l  have both monopole and quadrupole components. 

We start by evaluating the  monopole term Yo,(m) of Yo,. From equations 

(40) and (29a), i n  region I11 Yo, (m) i s  constant; i t s  value w i l l  be chosen 

as zero s ince t h i s  region extends t o  in f in i ty .  In region 11, using (24) 

2aJ 3 Y!,(%) = aol + a o a  

from which, by (39) 

%,(+ s CLL . + ca = -+-A 

and again, t h i s  constant must vanish because of continuity with region 111. 

In region I, from (38) 

The quadrupole po ten t i a l  Y a ( q )  gives a nonzero f i e l d  i n  all three 

regions; it may be found by inser t ing  the  solut ion f o r  the quadrupole 
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component of Y1 i n t o  equations (381, (39) and (40). 

very high conductivity the quadrupole f i e l d  i n  I1 is also given by 

In the  l i m i t  of 

E 8 - [\rg 21 = - ie - 3 f o R e  s&&c#&/v - 
showing t h a t  Yo is  then independent of r 

Y o  = - p a ,  .p,(*&) (53 1 
I n  region I11 Yo i s  a harmonic quadrupole potent ia l .  From equa- 

t i o n  (40) one sees t h a t  it does not diverge with CY=. It i s  in te res t ing  

t o  note t h a t ,  i n  the  l imi t ing  case, E and B bath vanish in  the  equator- - - 
ial plane, so t h a t  pa r t i c l e s  released from the  solar equator may freely 

t r a v e l  a l l  over it ( there  is  an angle of about 7" between the  e c l i p t i c  

and the  plane of solar ro t a t ion ) .  

i t s  po ten t i a l  does not equal the  poten t ia l  a t  i n f i n i t y  but is 

While t h i s  plane is an equiputential ,  

Y e  h e - )  = 1 ( r / R J )  * WRO5 

The quantity P/Ro is of the  order of the  f i e l d  in t ens i ty  at T = Ro 

and w i l l  be taken as one gauss; Yo then has the order of 10' vo l t s .  

This r e s u l t  m a y  have some connection t o  t h e  modulation of cosmic-ray 

i n t e n s i t y  by the  so l a r  a c t i v i t y  cycle, which resembles t h a t  produced 

by an e l e c t r i c  f i e l d  ([Ehmert, 19601 and papers referred t o  there; most 

t heo r i e s  of t h i s  c lass  have asswned a geocentric e l e c t r i c  f i e l d ) .  

However, t he  value of Yo deduced here is  too  s m a l l  by at l e a s t  a f ac to r  

of 10, and it should be borne i n  mind t h a t  when the  so l a r  dipole reverses 

i ts  direct ion,  as has been observed i n  198 (Babcock, l 9 9 ) ,  Yo is bound 

t o  reverse i ts  sign, too. 

(54) 
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To the above ro ta t iona l ly  symmetric model one m a y  add a homogeneous 

" i n t e r s t e l l a r  magnetic f i e l d "  - Bo, p a r a l l e l  t o  t he  symmetry axis. 

f i e l d  is represented by a poloidal po ten t ia l  (diverging at i n f i n i t y )  

Such a 
' 

Yr = $*4.-Yb* 

so that equation (2%) w i l l  be replaced by 

9% ' G d: ($ ,"k-e)  + i & % O S  -4. 

Equations (30) s t i l l  hold, but the last two of equations (31) have t o  be 

modified t o  

t i o n  34) t h a t  b12 is  modified by a f ac to r  

As has been mentioned, 8/Ro i s  of t he  order of the  field at e =  R. 

If CY a n d J 1  a re  considerably la rger  than unity, the added term i s  neg- 

l i g i b l e  unless Bo i s  very much l a rge r  than P/Ro, which is  hardJy the  

case f o r  t he  i n t e r s t e l l a r  f i e l d .  Thus t h e  poloidal f i e l d  in 11, and 

'consequently .Yl and yo, are  only  negligibly affected by Bo. 
important term which may undergo a la rge  change i s  b, , which in t he  

l imi t ing  case became8 

The only  
It 

(58) 
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Figure Captions 

1. Division of space i n t o  three concentric regions 

2. 

3. 

Lines of force of the magnetic f i e l d  i n  the l imi t ing  case 

Equipotentials f o r  the e l e c t r i c  f ield in the l imi t ing  ca8e 
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